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Abstract. The damped, finite-amplitude forced vibration of a rigid body supported symmetrically by simple shear
springs and by a smooth inclined bearing surface is studied. The spring material is characterized as a compressible
or incompressible, homogeneous and isotropic viscohyperelastic material for which the shear response function
in a simple shear deformation is a quadratic function of the amount of shear. The trivial case of constant shear
response is included. The equation for the damped motion of the load is a nonlinear, ordinary differential equation
of the forced Duffing type with a constant static shift term due to gravity, and for which an exact solution is
unknown. An approximate solution is obtained by the method of harmonic balance. Results for the motion of the
load relate the system design parameters to the amplitude-frequency response and to the amplitude-driving force
intensity response of the system. Regions of stable motion are identified in terms of the amplitude of the motion,
driving-force intensity, driving frequency, and system design parameters. Geometrical characterizations of the
motion are related schematically to certain cross-sections through the full three-dimensional solution surfaces for
the amplitude and for the phase of the motion. A simple diagram maps the loci of all bifurcation points against
the static shear deflection, which serves as the system design parameter for the inclined motion. An infinitesimal
stability analysis shows that the bifurcation points of the inclined motion fall on the stability boundaries of the
numerical solution of a three-parameter Hill equation. The solution provides information that illustrates how the
system design parameters affect the motion of the load and how these may be chosen to control the amplitude
of the oscillations and the stability of the system. The results are valid for all compressible or incompressible,
homogeneous and isotropic, viscohyperelastic materials in the aforementioned class.
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1. Introduction

It is well-known that rubber shear mounts can sustain substantial deflections under severe
time-varying loads due to impact and vibration. At the same time, the damping properties of
the rubberlike material serve to mitigate such loading effects by providing natural vibration
absorption through energy dissipation. Consequently, in analysis of the motion of a load
supported by rubber shear mountings, it is anticipated that both finite deformation of the
shear blocks and internal viscous damping properties of the elastomer share importance. While
the shear response of elastomers generally is nonlinear, experiments show that simple shear
springs exhibit the atypical property of linear shear response for angles of shear up to roughly
25◦ for soft rubbers, and somewhat smaller angles for hard rubbers [1]; also [2, Chapter 35]
and [3, Section 4.3]. On the other hand, much larger packaging shock deflections and vibration
amplitudes are not uncommon. In fact, deflections up to twice the thickness of the shear block,
an angle of shear exceeding 60◦, are reported [4, Chapter 7]; and beyond 25◦, tests show that
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the shear stress response becomes increasingly nonlinear [1], [2, p. 35.18]. Bearing in mind
that a great fraction of the deflection may be due to static loading alone, investigation of the
finite amplitude vibration of a load supported by simple shear springs operating beyond, but
perhaps close to the linear range of shear response is especially relevant. For, even though
the nonlinear variation in material properties, in this instance the shear response function,
may be small, the nonlinearity can produce undesirable dynamical effects on the motion. Our
objective here is to study the nonlinear, damped, finite-amplitude forced vibration of a load
supported by simple shear springs operating in the near-linear range of shear response.

An extensive study of the free and forced, but undamped vibration of a load on simple shear
springs characterized by compressible and incompressible, isotropic hyperelastic material
response has been carried out by Beatty and co-workers [5]–[10]. To capture the mechanical
behavior in the near-linear range of the nonlinear material, a shear-response function quadratic
in the amount of shear, a model based on the general, nonlinear constitutive relation for the
isotropic elastic shear-response function, is introduced. This leads to an equation of motion
of the Duffing type for both free and driven oscillations. In the former case, the solution is
obtained exactly in terms of a Jacobian elliptic function [5], while the approximate method
of harmonic balance is used in [10] to study the undamped forced vibrational motion of the
system. It is shown that the approximate solution for the driven-vibration case provides useful
information that illustrates how the system design parameters affect the motion of the load and
how these may be chosen to control the amplitude of the oscillations and the system stability.
Effects of damping on the free vibrations of the load, based on a constitutive equation for
an isotropic, viscohyperelastic material have been studied by Beatty and Zhou [11, 12]. The
model having quadratic shear response in [12] leads to an equation of the damped Duffing
class, and the approximate solution is therein described by the method of slowly varying
amplitude and phase.

In this paper, we study the effects of the nonlinear elastic material response on the damped,
finite-amplitude forced vibration of a load supported symmetrically by shear springs of the
flat, sandwich plate variety that initially are stress-free, undeformed, and undergo ideal simple
shear deformations. The load is also supported by a smooth, inclined bearing surface parallel
to the plane of shear. For the class of viscohyperelastic materials having a quadratic shear-
response function, the equation of motion of the load is described by a forced Duffing equation
for which an approximate solution is obtained by the method of harmonic balance. We focus
on the physical content of the results and also explore stability of the harmonic solution
of this equation. Results for the motion of the load relate the system design parameters to
the amplitude-frequency response and to the amplitude-driving force intensity response of
the system. Regions of stable motion are identified in terms of the amplitude of the mo-
tion, driving-force intensity, driving frequency, and system design parameters. Geometrical
characterizations of the motion are related schematically to certain cross-sections through the
full three-dimensional solution surfaces for the amplitude and for the phase of the motion
described in the general analysis due to Holmes and Rand [13]. A simple bifurcation diagram
maps the loci of all bifurcation points against the static shear deflection, which serves as the
system design parameter for the inclined motion. An infinitesimal stability analysis shows that
the bifurcation points of the inclined motion fall on the stability boundaries of the numerical
solution of a three-parameter Hill equation, which for a horizontal motion reduces to the
Mathieu equation.

We begin in Section 2 with a description of the problem and the formulation of the equation
of motion. The problem solution by harmonic balance is described in Section 3. In Section
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Figure 1. Schematic of the nonlinear oscillator.

4, the amplitude-frequency response and the amplitude-driving force response are described
graphically to relate the system design parameters to the motion of the system and to its
bifurcation at points of instability. Infinitesimal stability of the harmonic solution is examined.
Bifurcation points of the inclined motion are now exhibited as points on the stability bound-
aries of the numerical solution of the three-parameter Hill equation. We focus throughout on
the physical content of the results.

2. Formulation of the problem

Let us consider a rigid body of massM, called the load, supported symmetrically by compress-
ible or incompressible, homogeneous and isotropic viscohyperelastic shear blocks of original
length L and cross-sectional areaA. The shear blocks are bonded to the load at one face and to
parallel rigid supports at the other. We suppose that the load is supported on a smooth, bearing
surface inclined at an angle θ with the horizontal plane and parallel to the plane of shear, as
shown in Figure 1.

The inertia of the shear springs will be neglected, as usual; and effects due to symmetrical
bending of the shear mounts will be ignored. We thus consider that each shear block exe-
cutes an ideal isochoric, time-dependent simple shear deformation of amount σ(t) = tan α(t),
where α(t) is the current angle of shear at time t measured from the initial, undeformed state
shown in Figure 1. Let T12(σ, σ̇) denote the Cauchy shear stress exerted on each shear spring
due to M, and recall that the cross sectional area A of each shear mount is preserved in a
simple shear. The viscous effect is indicated by the stress dependence on the shearing rate
σ̇ ≡ dσ(t)/dt . Then the total force acting on the load is due to the restoring shear force
T̂ (σ, σ̇) ≡ −AT12(σ, σ̇) exerted by each shear spring, the gravitational component Mĝ, and
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an external driving force F(t), all parallel to the direction of the inclined motion, the x-axis.
It is evident that the total of the normal surface tractions exerted on the load M by the shear
blocks is equipollent to zero. Clearly, other tractions that act on the shear blocks to control
their simple shear deformation are of no concern here.

Let x(t) denote the uniaxial motion of the center of mass of the load M relative to the
undeformed position of the shear blocks, and note from Figure 1 that tan α = x/L. Then the
equation of motion of the load is given by

MLσ̈ = Mĝ + F(t)− 2AT12(σ, σ̇) (2.1)

where ĝ = g sin θ. The shear stress T12(σ, σ̇) is considered next.

2.1. SHEAR STRESS FOR ISOTROPIC VISCOHYPERELASTIC SHEAR MOUNTS

The shear stress relation in a simple shear deformation of a compressible or an incompressible,
homogeneous and isotropic viscohyperelastic material introduced by Beatty and Zhou in [11]
is given by

T12(σ, σ̇) = σG(σ2)+ hσ̇ , (2.2)

where the shear response function G(σ2) is a positive, even function of σ for which G(0) ≡
G0 is the shear modulus in the natural state, and h is a constant viscosity coefficient. When
h = 0, (2.2) yields the familiar constitutive equation for the shear stress in a compressible or
incompressible, isotropic elastic solid [14]. Note that the shear stress is always an odd function
of the amount of shear, so it acts on the shear mount in the direction of the shear; and hence
an equal and oppositely directed restoring shear force acts on the load, as shown in Figure 1.

In particular, for the viscoelastic Mooney–Rivlin and neo-Hookean material models the
shear response function is a positive constant, G(σ2) = G0; and hence for these models the
shear stress in a simple shear deformation is given by the linear function T12(σ, σ̇) = G0σ+hσ̇.
For other kinds of compressible and incompressible, homogeneous and isotropic hyperelastic
materials studied in [5], the shear-response function is a quadratic function of the amount of
shear:

G(σ2) = G0(1 + εσ2) , (2.3)

where G(0) = G0 > 0 and ε ≥ 0. When ε = 0, we recover our previous linear models.
Moreover, for rubberlike materials with a small second order modulus ε � 1, the relation
(2.3) describes the ‘roughly linear’ shear stress response of simple shear springs mentioned
earlier [1,2]. In this case, the nonlinear variation of the elastic shear-response function with
the amount shear may be small, but it clearly is not ignorable for increasingly larger amounts
of shear, a great fraction of which may arise from static deflection.

2.2. FORMULATION OF THE EQUATIONS OF MOTION

The equation of motion for the shear suspension system is now obtained by use of (2.2) and
(2.3) in (2.1). Writing F(t) = F0 cos qt , where F0 and q are the maximum force intensity and
the driving frequency, respectively, and introducing the dimensionless time variable τ ≡ ωt ,
we obtain the following dimensionless form of the equation of motion for the shear suspension
system:
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σ′′ + 2νσ′ + σ + εσ3 = σe(1 + εσ2
e)+ Q̄ cos ωf τ . (2.4)

Here the prime denotes the derivative with respect to τ, σe is the amount of static shear
deflection of the load,

2ν ≡ 2A

MLω
h, Q̄ ≡ Q0

ω2
, ωf ≡ q

ω
, (2.5)

and

ω2 ≡ 2A

ML
G0, Q0 ≡ F0

ML
. (2.6)

Also, the equilibrium equation 2AT12(σe, 0) = Mĝ for the load may be written as

σe(1 + εσ2
e) = p2

0

ω2
, p2

0 ≡ ĝ

L
. (2.7)

In a horizontal motion of the system, ĝ = 0 and (2.7)1 yields σe = 0.
Solutions for the undamped and damped, free vibration of the load for which Q̄ ≡ 0

in (2.4) may be found in [11, 12]. Otherwise, (2.4) is a damped, forced Duffing equation
with a constant equilibrium shift term that depends on ε and which cannot be removed by
transformation. The solution of (2.4) has not been previously explored in the present physical
context.

3. Analysis of the damped vibrational motion

Next we explore the finite-amplitude, damped vibrational motion of a load supported by
compressible or incompressible, isotropic, viscohyperelastic shear mountings by studying the
solution of the nonlinear equation (2.4). First, we sketch briefly the reduced form of (2.4) for
damped, forced vibrations of the load on shear mountings having a constant shear-response
function, and then recall the approximate solution for damped, free vibrations on shear mount-
ings having a quadratic shear response function. We shall then study the steady-state, damped,
forced vibrational motion of the load for the class of materials having quadratic shear response
characterized by a small second-order modulus so that 0 < ε � 1, and obtain the approximate
solution of (2.4) by use of the method of harmonic balance. The physical behavior of the shear
suspension system is then described both analytically and graphically.

3.1. DAMPED, FORCED VIBRATION WITH CONSTANT SHEAR RESPONSE

Let us consider the class of viscohyperelastic materials characterized by a constant response
function G(σ2) = G0 in (2.3). We thus set ε = 0 in (2.4) to obtain the governing equation for
the damped, forced vibrational motion,

σ′′ + 2νσ′ + σ = σe + Q̄ cos ωf τ . (3.1)

This equation is valid for the class of viscoelastic Mooney–Rivlin materials, for example. The
ultimate equilibrium shear deformation σe is given by (2.7)1. This is the ultimate amount of
shear in a quasi-static creep due to gravity according to the solutions given by Beatty and
Zhou [11]. If we transform (3.1) relative to σe by using s = σ − σe, then (3.1) becomes



338 A. E. Zúñiga and M. F. Beatty

s′′ + 2νs′ + s = Q̄ cos ωf τ . (3.2)

Clearly, the nature of the solution of (3.2) is well-known and need not be discussed here.
We note, however, that the steady-state solution of (3.2) for the damped, forced vibrational
motion has the form

s(τ) = σ(τ)− σe = B cos(ωf τ − φ) , (3.3)

in which the amplitude B and initial phase φ depend on both the excitation frequency ωf and
the damping parameter ν.

3.2. DAMPED, FREE VIBRATION WITH QUADRATIC SHEAR RESPONSE

For viscohyperelastic materials having quadratic shear response, we return to the general
equation of motion (2.4). For the damped, free vibrational motion, Beatty and Zhou [12]
provide an approximate solution of (2.4) by the Kryloff-Bogoliuboff averaging method of
slowly varying amplitude and phase [15]. Cast in terms of the notation used here, their solution
for the damped, free vibrational motion may be written as

σ = σe + A0e−ντ sin

[
τ

(
1 + 3

2
εσ2
e

)
− 3εA2

0

16ν
e−2ντ + φ0

]
, (3.4)

where A0 and φ0 are constants of integration that may be found from the assigned initial
conditions as demonstrated in [12]. Otherwise, the solution of (2.4) for the damped, forced
vibration case has not been explored in the present context. This is a nonlinear ordinary
differential equation whose exact solution is unknown. In consequence, we shall seek its
approximate steady-state solution.

3.3. STEADY-STATE, DAMPED VIBRATION WITH QUADRATIC SHEAR RESPONSE

To study the forced inclined motion of the load, we adopt the method of harmonic balance
[15–19]. Accordingly, we recall (3.2) for the linear model and thus assume a steady-state
solution of (2.4) of the familiar form (3.3):

σ = B cos(ωf τ − φ)+ c = a sin ωf τ + b cos ωf τ + c . (3.5)

The constant c is introduced to account for the nonlinear equilibrium shift in (2.4), B denotes
the constant, symmetric amplitude relative to the coordinate χ = σ − c, and φ is the constant
phase angle between the amplitude shear response B and the external driving force Q̄. As
usual,

a ≡ B sin φ, b ≡ B cos φ , (3.6)

and hence

B2 = a2 + b2, tan φ = a

b
. (3.7)

Clearly, both B and φ will depend strongly on the system parameters. Substituting (3.5)
into (2.4) and applying the method of harmonic balance, we obtain the equilibrium shift
equation
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c

(
1 + 3εB2

2

)
+ εc3 = σe(1 + εσ2

e) , (3.8)

and the motion amplitude-excitation frequency response equation for an assigned driving force
intensity Q̄:

ω4
f + ω2

f [− 3
2εB

2 − 2(1 − 2ν2 + 3εc2)] + (1 + 3εc2)2 + 3
2B

2ε ×

×(1 + 3εc2 + 3
8εB2)− Q̄2

B2
= 0 . (3.9)

The phase angle φ is given by

φ = − arctan
2νωf

ω2
f − 1 − 3εc2 − 3

4εB2
. (3.10)

Notice that c = σe if and only if ε = 0, i.e. when and only when the shear-response function
(2.3) is constant. Hence, clearly, the motion is asymmetric to the static equilibrium position
at σe, whose value may be obtained from (2.7)1. When B is prescribed, (3.9) is a quadratic
equation in ω2

f whose exact solution is given by

ω2
f = −2ν2 + 3

4εB2 + 1 + 3εc2 ±
√

4ν2[ν2 − (1 + 3εc2 + 3
4εB2)] + Q̄2

B2
, (3.11)

and hence φ is determined by (3.10). Henceforward, we shall refer to the motion amplitude
B as simply the amplitude, not to be confused with the driving-force amplitude Q̄; and the
excitation frequency ωf will be called briefly the frequency, not to be confused with the sys-
tem frequency ω. Therefore, (3.11) and any of its variants is called the amplitude-frequency
equation.

Although (3.8) may be solved exactly for c, this inessential complication can be circum-
vented by use of its perturbation in the small parameter ε, as shown in [10]. We thereby obtain
the approximate solution

c = σe(1 − 3
2B

2ε) . (3.12)

We note that the estimate (3.12) is valid so long as B <
√

2/(3ε), and hence the ultimate
amplitude Bc(ε) imposed by a positive shift c is given by

Bc(ε) = √
2/(3ε) . (3.13)

For small ε, this imposes no significant amplitude restriction. Using (3.12) in (3.11) and
neglecting small terms O(ε2), we find

ω2
f = −2ν2 + 3

4
εB2 +�2 ±

√
4ν2[ν2 − (�2 + 3

4εB
2)] + Q̄2

B2
, (3.14)

where, by definition,
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�2 ≡ 1 + 3εσ2
e . (3.15)

We recall from [6] that � is the circular frequency for small amplitude, free vibrations of the
load about its static state. Similarly, use of (3.12) in (3.10) yields the initial phase

φ = − tan−1

(
2νωf

ω2
f −�2 − 3

4εB
2

)
. (3.16)

With the results (3.14) and (3.16) in hand, the approximate steady-state solution (3.5) of
Equation (2.4) now has the form

σ = σe(1 − 3
2εB2)+ B cos(ωf τ − φ) . (3.17)

4. Numerical solution and physical results

To conclude study of (3.17), we need to examine the amplitude-frequency response and other
physical attributes of the system. As usual, we consider B as prescribed and ωf (B) to be
found, but its map is plotted as |B| versus ωf . First, we recall that the familiar parabolic-
shaped backbone curve that describes the special undamped, free vibrational motion of the
load is obtained from (3.14) when Q̄ and ν vanish, namely,

|B| =
√

4

3ε
(ω2
f −�2) . (4.1)

The plot of this function intersects the ωf -axis at ωf = �. In particular, for the horizontal
motion, we set σe = 0 in (3.15) to obtain � = 1, in which case the backbone curve (4.1)
intersects the axis at ωf = 1. The shift of ωf away from ωf = 1 is thus due to the gravita-
tional effect in (2.7). Otherwise, the amplitude-frequency response for the horizontal motion
is similar to that for the inclined motion, so we shall not consider it further.

For a fixed value of the ratio p0/ω in the equilibrium equation (2.7)1, that is, for the same
load and shear spring characteristics, we may compute exactly the corresponding unique,
positive equilibrium shear σe. To avoid this inessential complication, we adopt the first order
perturbation estimate for σe given by

σe = r2(1 − εr4) with r ≡ p0

ω
. (4.2)

Of course, for positive σe, we must have r < ε−1/4, which for small ε clearly imposes no
significant limitation. Otherwise, for each choice of r, ε, and a specified force intensity Q̄, the
amplitude-frequency response curves for small damping ν may be obtained from (3.14).

The effects of small damping in the amplitude-frequency response are illustrated in Figure
2 for selected parameters noted there. The ultimate amplitude (3.13) imposed by a positive
static shift has been taken into account, and we have chosen r2 = 1

2 for the system design. For
ε ={0·02,0·04} in the example shown here, (3.13) requires Bc ={5·77,4·08}, respectively.
Because of damping, the amplitude-frequency response curve cuts the backbone curve at a
finite driving frequency, and the peak amplitude is finite. A sudden decrease (downward jump
to E1) in the amplitude of the motion occurs as the excitation frequency reaches point E
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Figure 2. Amplitude-frequency response curves for the inclined damped motion of the load for values of (ε, σe) =
(0·02, 0·497), (0·04,0·495), Q̄ = 0·1, and ν =0·01, when r = √

2/2.

in Figure 2. And when the frequency is gradually decreased from a higher value, a sudden
increase (upward jump to T1) in the amplitude occurs at point T in Figure 2. The points E
and T thus represent the limit between stable and unstable motions. The dashed lines between
these bifurcation points emphasize unstable states that are unattainable. The bifurcation point
T plainly occurs at the vertical tangent. We shall return to this later.

Use of (4.1) in (3.16) shows that the phase angle at the bifurcation point E in Figure 2
has the universal value φ = −π/2. This phenomenon is described in Figure 3 for the same
parameter set used in the plots for Figure 2. It is seen from Figures 2 and 3 that, as the
frequency ωf increases from zero, the amplitude response of the system for −π/2 < φ ≤ 0 is
in phase with the driving force until the response reaches E where φ = −π/2. For any further
increase in the frequency, the point E jumps suddenly from E to E1 in Figures 2 and 3; and
the motion response and excitation force are now out of phase for −π ≤ φ < −π/2. After the
point moves from E1 for increasing values of ωf , the amplitude of the oscillations decreases
and the response continues out of phase with the excitation. If the system is operating at a
high value of ωf , say at point A in Figure 3, the response is out of phase with the excitation;
and as the driving frequency ωf is decreased, the response moves from A to T in Figures 2
and 3. The motion jumps suddenly from T to T1 for any further decrease in the value of ωf .
This results in a large increase in the amplitude of oscillations of the load, and the response is
again in phase with the excitation. After the response moves from T1 for decreasing values of
ωf , the amplitude of oscillation decreases as well, and the response continues in phase with
the driving force.

The results exhibited in Figures 2 and 3 characterize the general motion of the system
for any selected set of system design parameters. To complete the physical description of the
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Figure 3. Phase angle-frequency plots for the inclined damped motion of the load for the same parameter values
illustrated in Figure 2.

motion, however, we need to determine the bifurcation conditions and examine the stability
of the system.

4.1. BIFURCATION CONDITIONS

To find the bifurcation points of the motion, we rewrite (3.14) and introduce the transformation
y = B2 to obtain

y3 + a2y
2 + a1y + a0 = 0 , (4.3)

where

a0 = −16Q̄2

9ε2
, a1 = 16

9ε2
[(ω2

f −�2)2 + 4ν2ω2
f ], a2 = 8

3ε
(�2 − ω2

f ) . (4.4)

The number of real roots of (4.3) is determined by its discriminant

D ≡ q∗3 + r∗2 , (4.5)

where

q∗ = a1

3
− a2

2

9
, r∗ = 1

6(a1a2 − 3a0)− 1
27a

3
2 . (4.6)

In general, if D > 0, there is only one real root of (4.3); if D = 0, there are three roots at
least two of which are equal; and ifD < 0, there are three distinct, real roots. The bifurcation
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Figure 4. Plot of ω2
f b

versus σ2
e at which the damped motion bifurcates for ε = 0.02, Q̄ =0·1, and ν =0·01.

The point (0·248, 1·11) corresponds to values (σe,ωf b) =(0·497, 1·053).

frequency occurs at values ωf = ωf b for which D = 0; and hence, this condition will aid in
our identifying design-parameter values that control the motion and stability of the system.

Now consider the physical situation. Since y = B2 > 0, we know that physically mean-
ingful roots of (4.3) must be positive. Notice that a0 < 0 and a1 > 0. Therefore, in accordance
with Descartes’s rule of signs, (4.3) may have three positive real roots if and only if a2 < 0;
hence, by (4.4)3, when and only when ω2

f > �2. At a bifurcation frequency ωf = ωf b,
two of these roots are identical; otherwise, one of the three distinct positive roots of (4.3) is
inherently unstable and unattainable. When ω2

f = �2, a2 = 0; and hence (4.5) shows that
D > 0. Clearly, if a2 > 0, (4.3) has at most one positive real root of physical interest; and
any negative real roots lack physical content and may be ignored. Therefore, no bifurcation or
inherent instability occurs for any excitation frequency ω2

f ≤ �2; bifurcation and instability
can occur only for certain operating frequencies ω2

f > �
2 for which D = 0.

We recall that ε is a specified small material parameter; and the amount of static shear
deflection of the load σe is determined by the system design and load intensity in accordance
with (2.7). Therefore, � defined in (3.15) is an inclusive system design parameter. Let �d
denote a specified value for the system design parameter �. Then, in accordance with our
previous argument, the safe operating design criterion for which no bifurcation or inherent
instability will arise is provided by

ω2
f ≤ �2

d . (4.7)

For an assigned value of ε, the relation (3.15) in a plot of �2
d versus σ2

e shows that operating
speeds situated on or below the straight line �2

d = 1 + 3εσ2
e are safe. This does not preclude

existence of a safe operating frequency for which ω2
f > �

2
d , provided ωf is not a bifurcation
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Figure 5. Schematic of the solution surface in (ωf , Q̄, |B|)-space shown in the upper diagram, its view from
above shown in the central diagram, and the solution surface in (ωf , Q̄,φ)-space shown in the lower diagram, all
for the same specified values of the parameter set (ε,σe, ν). (Adapted from [13].

frequency for which D = 0. For the examples in Figures 2 and 3, we find ωf ≤ �d =(1·007,
1.015). Hence, we see clearly in these sample illustrations that (4.7) indeed yields a safe
value for the operating frequency; and higher, safe operating frequencies exist, except at the
bifurcation points E and T .

Let ωf b denote the driving frequency at a bifurcation point for which D = 0 in (4.5),
namely,

8ϑc

81ε

[
ω2
f b −�2

d ±√
ϑc

]
= Q̄2 (4.8)

where, by definition,

ϑc ≡ (�2
d − ω2

f b)
2 − 12ν2ω2

f b . (4.9)

For a given viscohyperelastic shear-spring material with small damping ν and quadratic shear
response, with a specified design value for the driving-force intensity Q̄ and a design para-
meter value �2

d defined by (3.15), two bifurcation values ω2
f b of the excitation frequency are

determined by (4.8). These correspond to points T and E in Figures 2 and 3. For design-
illustration purposes, let us consider the variation of ω2

f b versus σ2
e shown in Figure 4, for
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fixed material values ε =0·02, ν =0·01, and an excitation amplitude Q̄ =0·1. We thus obtain
from (4.8) two bifurcation curves ω2

f = ω2
f b in Figure 4 that are the loci of bifurcation points

T and E belonging to the corresponding family of amplitude-frequency response curves. For
any specified system design, the bifurcation points and a safe system operating range may
be read from the design plots in Figure 4. (While these plots have the appearance of straight
lines over the range of values shown here, they actually are curved.) In this way, for any
specified system-parameter design values of ε, σe, Q̄, and ν, a suitable excitation frequency
operating range can be decided for which the motion will be stable, for example. Conversely,
for any specified excitation frequency, (4.8) may be applied to determine various critical
design-parameter values. The utility of our simple bifurcation maps in Figure 4 applied to
any typical system design is underscored by the stability analysis presented farther on.

For specified values of ε, σe, ν, our solution set forms a three-dimensional surface in
(ωf , Q̄, |B|)-space shown schematically in the upper diagram of Figure 5, which is based
on the general analysis due to Holmes and Rand [13]. Here we illustrate its relation to the
physical problem of nonlinear shearing vibrations with damping. A cross-section through this
surface defined by the plane ωf =1·2 in Figure 6 shows the relationship between Q̄ and |B|
for a few fixed values of the parameter set ε, σe, ν. Due to the presence of small damping,
the curves in Figure 6 do not intersect the vertical line at the points Q̄ = 0, a characteristic
of the undamped case studied in [10]. The three-dimensional schematic in Figure 5 provides
an overview of the general physical characteristics represented in the special plane map of
Figure 6. We shall say more about this in a moment. As one expects, Figure 6 shows that large
excitation forces produce large-amplitude vibrations of the load, and if one starts with either
a sufficiently small or large excitation force, no amplitude jumps can occur. Here we note that
the curves marked as |B < 0| and |B > 0| in Figure 6, and farther on in Figure 9, are maps
for which the amplitude B < 0 and B > 0, respectively, are plotted as |B|. We recall that the
motion for B < 0 is out of phase with the driving force.

Now return to (4.5) and let Q̄J denote the value of the driving-force intensity at a bifur-
cation frequency ωf b for which D = 0. We obtain equations that are similar to and which
may be read directly from those in (4.8) and (4.9). For a given set of design parameters ε,
σe, ν, we thus determine the bifurcation values of the driving-force amplitude Q̄J (ωf b) as a
function of the corresponding excitation frequency ωf b. This bifurcation diagram is plotted
in Figure 7 for two values of the second-order shear modulus ε and in Figure 8 for two values
of the damping coefficient ν. The stability boundaries in Figures 7 and 8 are the curves for
which |Q̄| = Q̄J and ωf = ωf b, i.e. Q̄J (ωf b). The characteristic cusp shape and symmetry
about Q̄ = 0 is evident [13]. Notice also that the cusps do not converge at the origin as
they do for the undamped case; and when small forces act on the system the solutions do
not bifurcate; we see again the safe region defined by (4.7). The bifurcation points T and E
of the amplitude-frequency curves in the example of Figure 2 are on the stability boundary
of the bifurcation curves in Figures 7 and 8. The points T and E in Figure 2 correspond,
respectively, to the bifurcation points J and H in Figure 6. The plots in Figures 7 and 8
are essentially different views of the same solution surface shown schematically in Figure
5 and viewed from above, as illustrated schematically in the central diagram of Figure 5.
The phase-angle-frequency diagram in Figure 3 corresponds to a cross-section by the plane
Q̄ =0·1 through the solution surface shown in the lower schematic diagram of Figure 5. The
criterion (4.7) for a safe operating frequency is evident in all of these stability diagrams. The
general overall safe operating range is provided by the simple stability map in Figure 4; this
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Figure 6. Motion amplitude-driving force amplitude curves for (ε, σe) =(0·02, 0·497), (0·04, 0·495), ν =0·01, and
ωf =1·2. The latter defines a plane section through the solution surface shown schematically in the top diagram
of Figure 5.

characterizes the stability of the forced damped, inclined motion of the system for specified
parameter values.

4.2. INFINITESIMAL STABILITY OF THE MOTION

In previous discussions, we have argued intuitively that the dotted portion TE of the amplitude-
frequency response curve shown in Figure 2, and hence throughout our subsequent descrip-
tion, represents inherently unstable, unattainable states of the motion. In this section, we
reinforce this physical argument by briefly examining more closely the infinitesimal stability
of the steady-state, forced vibrational motion σ(τ) of the load described by (2.4).

Let σ(τ) and σ̂(τ) = σ(τ)+w∗(τ) denote two solutions of the equation of motion (2.4) for
which the initial conditions for σ̂(τ) and σ(τ) at τ = 0 are very nearly the same. Substituting
σ̂(τ) for σ(τ) in (2.4), noting that σ(τ) satisfies the same equation, and neglecting powers of
w∗(τ) greater than the first, we obtain the linearized equation for the small perturbed motion
w∗(τ):

w∗′′ + 2νw∗′ + w∗(1 + 3εσ2) = 0 . (4.10)

We next introduce the transformation

w∗(τ) = e−ντw(τ) (4.11)

to obtain from (4.10) the following linear differential equation with a time-dependent coeffi-
cient:
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Figure 7. Bifurcation solutions in Q̄ − ωf space for values of (ε, σe) =(0·02, 0·497), (0·04, 0·495) and a fixed
damping value of ν =0·01. This is a top view of the solution surface as shown schematically in the central diagram
of Figure 5.

Figure 8. Bifurcation solutions in Q̄-ωf space for values of ν =0·01, 0·05 and a design pair (ε, σe) =(0·02,
0·497). This is an alternative top view of the solution surface as shown schematically in the central diagram of
Figure5.
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w′′ + w(1 − ν2 + 3εσ2) = 0 . (4.12)

If the solution w(τ) of this equation is bounded, the perturbed motion (4.11) decays and σ(τ)

is said to be stable; otherwise, the motion σ(τ) is called unstable.
We consider the steady-state solution (3.5) and introduce Z = ωf τ − φ as the new inde-

pendent variable to write σ = B cosZ + c and w′′ = ω2
f d2w/dZ2. Then (4.12) transforms to

the three-parameter Hill equation:

d2w

dZ2
+ w(d1 + d2 cosZ + d3 cos 2Z) = 0 , (4.13)

where

d1 ≡ 1

ω2
f

(1 − ν2 + 3

2
εB2 + 3εc2), d2 ≡ 6εcB

ω2
f

, d3 ≡ 3εB2

2ω2
f

(4.14)

are constants. For this equation, approximate results and stability boundaries of the motion
may be found in [20]–[23], for example. Notice in the derivation leading to (4.13) that all
order terms in ε have been retained.

Equation (4.13) characterizes the perturbed inclined motion of the load on simple shear
mounts. Notice that d2 arises from the equilibrium shift c; and hence to simplify our conclud-
ing remarks, we first consider the horizontal case.

4.2.1. Stability of the horizontal motion
For a horizontal motion, σe = 0 and (3.8) shows that c = 0. In this case d2 = 0 in (4.14); and
(4.13) thus reduces to the standard Mathieu equation [17, pp. 202–219], namely,

d2w

dy2
+ [δ + ε cos y]w = 0 , (4.15)

where y ≡ 2Z and the constant coefficients are defined by

δ ≡ d1

4
= 1

4ω2
f

(1 − ν2 + 4ω2
f ε), ε ≡ d3

4
= 3εB2

8ω2
f

. (4.16)

The commonly used Mathieu parameter ε defined in (4.16)2 appears only in our discussion of
stability graphs related to the Mathieu equation (4.15), so one should encounter no serious
confusion with our physical parameter ε for which only numerical values used in earlier
examples are noted in two places below.

Because ε is small, we shall assume that values of ε are small too. Hence, in accordance
with [17, pp. 208–213], the transition curves for the stability boundaries in the δ − ε plane for
the Mathieu equation (4.15), up to terms of second order in ε2, are given by

δ = 1

4
± ε

2
, δ = −ε2

2
. (4.17)

The curves δ = δ(ε) define the boundary curves of the stable (shaded) regions of the
Mathieu equation. Each point of these boundary curves corresponds to a periodic solution
of (4.15) of period 2π or 4π. The common practice is to plot these curves as ε versus δ, as
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Figure 9. Stability curves of the Mathieu equation (dotted lines) and the shear mount system response curves
(solid lines) for forced horizontal motion of the load.

shown in Figure 9. For the damped horizontal motion, the points T and E shown in Figure
9 correspond to the points T and E on the physical response curves similar to that shown
in Figure 2. We thus confirm that these points lie on the Mathieu boundaries identified as
|B < 0|, where we recall that the motion for B < 0 is out of phase with the driving force. It is
known that these boundary lines represent the transition between stable and unstable solutions
of the system. For details, see [17, pp. 213–219] for example. Specifically, we see from the
magnified portion of the stability curves of Figure 9 that the point T of the physical response
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Figure 10. Stability maps of the three-parameter Hill equation for d3 =0·065 (solid curves).

curve intersects the line δ = 1
4 − ε/2 while E intersects the line δ = 1

4 + ε/2. Hence, the
physical response between the points T and E for B < 0 falls in the unstable region of the
stability map in Figure 9, clearly indicating that the system is indeed unstable. Hence, the
amplitude-frequency response curve TE for the horizontal motion, which is similar to the
response shown in Figure 2 and subsequent figures for the inclined motion, defines inherently
unstable, unattainable states of the motion, as described earlier.

4.2.2. Stability of the inclined motion
When the motion is inclined d2 �= 0 and now we have a more complicated analysis based on
the three-parameter Hill equation. The determination of its stability conditions for the unstable
regions may be found in several resources, [20]–[23] for example. As usual, the bifurcation
points in the amplitude-frequency response curves in Figure 2 represent the transition be-
tween stable and unstable motions. To obtain stability maps similar to those for the Mathieu
equation, we may use the approximate, Fourier series solution of (4.13) developed by Klotter
and Kotowski [23]. The stability maps and their stability boundaries are thereby determined
numerically for a specified value of d3. We omit these details, refer the reader to [23], and
illustrate in Figure 10 our stability maps for d3 =0·065.

Because the stability maps depend on the values of d1, d2, and d3, we need to know their
behavior with respect to ωf . Figure 11 shows the plots of d1, |d2|, and d3 versus ωf for our
earlier example values of (ε, σe) =(0·02, 0·497), ν =0·01, and Q̄ =0·1. The corresponding
values of ωf , d1, and d2 for d3 =0·065 are 1·053, 0·977, and 0·077, respectively. Notice
that the three Hill parameters dk have a common vertical tangent at the bifurcation frequency
ωf = ωf b =1·053 in the example. These values are used to determine the stability of the
motion from Figure 10. The solid lines in Figure 10 represent stability boundaries in the
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Figure 11. Variation of d1, |d2|, and d3 versus ωf for values of (ε, σe) =(0·02, 0·497), ν =0·01, and Q̄ =0·1.

physical problem for which d3 =0·065, and hence we are dealing here with the full three-
parameter Hill equation. The dotted curves in Figure 10, however, are merely reference curves
for the stability boundaries of the standard Mathieu equation for which δ = d1 and ε = d2.
While this corresponds to formally setting d3 = 0 in (4.13), it should be evident that for our
physical problem d3 �= 0 in (4.14). With the above values and from Figure 10, it is found
that the solution at the point T shown here is indeed unstable. The reader will observe that
this result agrees with the plots presented in Figures 2, 3, 4, 7, and 8, in which the bifurcation
point T occurs at an excitation frequency ωf =1·053. These rather complicated procedures
underscore the great simplicity of the representation of the loci of the bifurcation points pro-
vided in our simple stability diagram in Figure 4 giving the bifurcation frequency at both T
and E for any specified design value σe.

5. Concluding remarks

We have studied the problem of the damped, finite-amplitude forced vibration of a load
supported symmetrically by simple shear springs and by a smooth inclined bearing surface.
The results obtained here are valid for all compressible or incompressible, homogeneous and
isotropic, viscohyperelastic spring materials for which the shear response function in a simple
shear deformation is a quadratic function of the amount of shear. This function models the
finite displacement of shear mountings that may operate beyond, but close to the linear range
of shear response observed in experiments. We find that even a small nonlinearity in the shear
response can produce potentially undesirable dynamical effects on the motion, which is char-
acterized by the forced Duffing equation with damping and with a constant static shift term
due to gravity. An exact solution of this equation, even when gravity is absent, is unknown,
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so we study its approximate solution by the classical method of harmonic balance. Because
of the nonlinear nature of the equation of motion, the static shift factor cannot be transformed
away. The physical relevance and complex effects of the static shift on the stability of the
motion is emphasized throughout this study.

The system design parameters are related to the dynamical response of the system for small
damping. Regions of stable motion are identified in terms of the amplitude of the motion,
driving-force intensity, driving frequency, and system design-parameters. Bifurcation limits on
the driving frequency for stable motion of the system are identified analytically and illustrated
graphically in Figures 2 and 3. In consequence, a safe operating design criterion that guaran-
tees stable motion of the load for any specified system design parameter values (ε, σe, Q̄, ν)
is derived; and the result is described graphically in Figure 4. This simple diagram maps the
loci of all bifurcation points against the static shear deflection, which serves as the principal
system design parameter for the inclined motion. In consequence, for any specified system
design, the bifurcation points and a safe system operating range may be read from these design
plots; and, hence, a suitable excitation frequency operating range can be decided for which
the motion will be stable. Conversely, for any specified excitation frequency, various critical
design parameter values may be determined. The effects of the driving-force intensity Q̄ on
the amplitude of the motion and on the range of stable motions for any assigned operating
frequency, for selected material constants, are illustrated in Figures 6, 7 and 8. These maps
provide alternative means of assessing overall safe operating conditions for the system. The
utility and simplicity of our bifurcation maps in Figure 4 applied to any typical system design
is underscored by our infinitesimal stability analysis of the system. This analysis shows that
the bifurcation points of the inclined motion fall on the stability boundaries of the numerical
solution of a complex, three-parameter Hill equation.

In short, the solution presented here provides information that illustrates how system de-
sign parameters affect the motion of the load and how these may be chosen to control the
amplitude of the oscillations and the stability of the system. In future work, we shall build on
this problem analysis to explore the controlling effect of a vibration absorber.

Acknowledgement

This work was partially funded by Grant No. CMS-9634817 from the National Science Foun-
dation, with partial matching support provided by the University of Nebraska Center for
Materials Research and Analysis.

References

1. J. F. Downie Smith, Rubber springs–shear loading. J. Appl. Mech. 61 (1939) A159–A167.
2. C. M. Harris and C. E. Crede, Shock and Vibration Handbook, vol. 2. Data Analysis, Testing and Methods of

Control. New York: McGraw-Hill (1961) pp. 35.1–35.18.
3. P. K. Freakley and A. R. Payne, Theory and Practice of Engineering with Rubber. London: Applied Science

(1978) 666 pp.
4. D. C. Allen, Use of rubber in shock packaging. In: P. W. Allen, P. B. Lindley and A. R. Payne (Eds.), Use of

Rubber in Engineering. London: Maclaren (1967) pp. 220–230.
5. M. F. Beatty, Finite amplitude vibrations of a body supported by simple shear springs. J Appl. Mech. 106

(1984) 361–366.
6. M. F. Beatty, Finite amplitude, periodic motion of a body supported by arbitrary isotropic elastic shear

mountings. J. Elasticity 20 (1988) 203–230.



Forced vibrations of a body supported by viscohyperelastic shear mountings 353

7. M. F. Beatty, Stability of a body supported by a simple vehicular shear suspension system. Int. J. Non-Linear
Mech. 24 (1989) 65–77.

8. M. F. Beatty and R. Bhattacharyya, Stability of the free vibrational motion of a vehicular body supported by
rubber shear mountings with quadratic response. Int. J. Non-Linear Mech. 24 (1989) 401–414.

9. R. Bhattacharyya, Stability of the forced vibrational motion of a vehicular body supported by rubber shear
mountings with quadratic response. Int. J. Non-Linear Mech. 24 (1989) 467–482.

10. A. E. Zúñiga and M. F. Beatty, Forced vibrations of a body supported by hyperelastic shear mountings.
Submitted.

11. M. F. Beatty and Z. Zhou, Finite amplitude, free vibrations of a body supported by incompressible, nonlinear
viscoelastic shear mountings. Int. J. Solids Struct. 27 (1991) 355–370.

12. M. F. Beatty and Z. Zhou, Simple shearing of an incompressible, viscoelastic quadratic material. Int. J. Solids
Strucs. 23 (1994) 3201–3215.

13. P. J. Holmes and D. A. Rand, The bifurcation of Duffing’s equation: An application of catastrophe theory. J.
Sound Vibr. 44 (1976) 237–253.

14. M. F. Beatty, Introduction to nonlinear elasticity. In: M. M. Carroll and M. A. Hayes (eds), Nonlinear Effects
in Fluids and Solids. New York and London: Plenum Press (1996) pp. 13–104.

15. J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems. New York: Springer-
Verlag (1985) 247 pp.

16. A. H. Nayfeh and D. T. Mook, Non-linear Oscillations. New York: John Wiley (1973) 704 pp.
17. J. J. Stoker, Non-linear Vibrations in Mechanical and Electrical Systems. New York: Interscience (1950) 273

pp.
18. R. E. Mickens, Comments on the method of harmonic balance. J. Sound Vibr. 94 (1984) 456–460.
19. R. E. Mickens, A generalization of the method of harmonic balance. J. Sound Vibr. 111 (1986) 515–518.
20. B. Porter, The stability of systems governed by a special form of Hill’s equation. Int J. Mech Sci. 4 (1962)

313–321.
21. K. Hamer and M. R. Smith, Stability of the general Hill’s equation with three independent parameters. J.

Appl. Mech. 39 (1972) 276–278.
22. L. A. Rubenfeld, The stability surfaces of a Hill’s equation with several small parameters. J. Appl. Mech. 40

(1973) 1107–1109.
23. K. Klotter and G. Kotowski, Über die Stabilität von Lösungen Hillscher Differentialgleichungen mit drei

unabhängigen Parametern. Z. Angew. Math. Mech. 23 (1943) 149–155.


